HEADER_DESCRIPTION
贊助商
Afrikaans
Azərbaycan
Bosanski
Català
Cebuano
Chichewa
Corsu
Cymraeg
Dansk
Deutsch
Eesti
English
Español
Esperanto
Euskara
Filipino
Français
Frysk
Gaeilge
Galego
Gàidhlig na h-Alba
Hausa
Hawaiʻi
Hmoob
Hrvatski
Igbo
Indonesia
Italiano
Jawa
Kinyarwanda
Kreyòl Ayisyen
Kurdî
Latinus
Latviski
Lietuvių
Lëtzebuergesch
Magyar
Malagasy
Malti
Maori
Melayu
Nederlands
Norske
O'zbek
Polskie
Português
Română
Samoa
Sesotho
Shona
Shqip
Slovenski
Slovenský
Soomaali
Sunda
Suomen
Svenska
Tiếng Việt
Türkmenler
Türkçe
Yoruba
Zulu
isiXhosa
kiswahili
Íslenska
Čeština
Ελληνικά
Беларуская
Български
Кыргызча
Македонски
Монгол
Русский
Српски
Татар
Тоҷикӣ
Українська
Қазақ
հայերեն
יידיש
עִברִית
ئۇيغۇرچە
اردو
سنڌي
عربي
فارسی
پښتو
नेपाली
मराठी
हिन्दी
বাংলা
ਪੰਜਾਬੀ
ગુજરાતી
ଓଡିଆ
தமிழ்
తెలుగు
ಕನ್ನಡ
മലയാളം
සිංහල
ไทย
ພາສາລາວ
မြန်မာ
ქართული
አማርኛ
ខ្មែរ
中文(简体)
日本
한국인

The Tale of the Tall Oak

Once upon a time, there was a tiny oak tree sapling named Peety. Peety dreamed of growing up into a mighty oak tree. 


Each year, Peety grew a little bit taller. He stretched his branches toward the sun and felt his trunk thicken as he grew. 


Over many years, Peety grew from a sapling into a young tree and finally into a tall, mature oak! He was so tall that he could see over the whole forest.


Peety noticed that the other tall oak trees had thick trunks, too. His friend Paul reached high into the sky just like Peety. Paul's trunk was thick and sturdy at the base. 


The small saplings that were sprouting had skinny little trunks. But Peety knew that would change over time as they grew taller.


Peety realized that, just like him, the taller an oak tree was, the thicker its trunk became. 


So even though the forest was filled with all different sizes of oak trees, Peety noticed a pattern - a correlation between tree height and trunk width. The tall trees always had thicker trunks, while the small saplings had skinny trunks. This was how pine trees grew strong enough to reach great heights! 


If you record how a tree grows - its height and trunk thickness - and plot it on a picture or graph, then the correlation is when these two things change together. That is, if you see that one is increasing, the other is also increasing, and vice versa.


The SDTEST® gives clues to someone's motivational values. However, additional polls can provide more pieces of the puzzle.


Imagine also giving a "Fears" poll. It asks people to rate different fears from 0 (not scary) to 5 (very scary). 


Now imagine 100 people who took both tests. You could match up each person's SDTEST® colors with their rated fears.


If people high in Blue values feared uncertainty more, that insight ties values to perceptions. Blue people may resist change more.


Or if Orange achievers feared failure most, that reveals their drive. They may overwork to avoid mistakes.


Comparing tests gives an expanded picture of values in action. More puzzle pieces make the whole image more apparent!


Multiple tests can work together, like colors blending on a palette. Other polls reveal what engages your values, like how your hobbies show what activities you enjoy most. Combined, they paint a richer picture of what motivates our thoughts and deeds.


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full results of our VUCA poll “Fears“ are available for free in the FAQ section after login or registration.


恐懼

Charts相关性
?
此函數自動計算線性和非線性相關性。在執行相關性分析之前,請先建立散佈圖來驗證關係的性質。只有在透過視覺或分析確認了假定的關係類型後,相關係數才有意義。
VUCA
?
這是表格中相關性的新接口視圖,通過螺旋動力學水平,波動性,不確定性,複雜性和歧義(V.U.C.A.)通過投票的響應與螺旋動力學顏色之間的正相關和負相關依賴性顯示
Country
Lang
-
Mail
重新計算
相關類型
線性(皮爾遜)
線性(皮爾遜)
非線性(斯皮爾曼)
Critical_value_of_the_correlation_coefficient
正態分佈,威廉·西莉·格塞特(William Sealy Gosset)(學生)
正態分佈,威廉·西莉·格塞特(William Sealy Gosset)(學生)
非正態分佈,Spearman
分配非正常非正常非正常普通的普通的普通的普通的普通的
所有問題
所有問題
我最大的恐懼是
我最大的恐懼是
Answer 1-
Weak_positive
0.0477
Weak_positive
0.0264
Weak_negative
-0.0248
Weak_positive
0.0985
Weak_positive
0.0330
Weak_negative
-0.0101
Weak_negative
-0.1500
Answer 2-
Weak_positive
0.0218
Weak_positive
0.0010
Weak_negative
-0.0411
Weak_positive
0.0623
Weak_positive
0.0458
Weak_positive
0.0135
Weak_negative
-0.0975
Answer 3-
Weak_negative
-0.0017
Weak_positive
0.0041
Weak_negative
-0.0475
Weak_negative
-0.0435
Weak_positive
0.0425
Weak_positive
0.0763
Weak_negative
-0.0237
Answer 4-
Weak_positive
0.0447
Weak_positive
0.0328
Weak_negative
-0.0298
Weak_positive
0.0184
Weak_positive
0.0337
Weak_positive
0.0243
Weak_negative
-0.0989
Answer 5-
Weak_positive
0.0222
Weak_positive
0.1284
Weak_positive
0.0032
Weak_positive
0.0832
Weak_positive
0.0002
Weak_negative
-0.0099
Weak_negative
-0.1827
Answer 6-
Weak_positive
0.0048
Weak_positive
0.0163
Weak_negative
-0.0634
Weak_negative
-0.0119
Weak_positive
0.0141
Weak_positive
0.0884
Weak_negative
-0.0368
Answer 7-
Weak_positive
0.0110
Weak_positive
0.0441
Weak_negative
-0.0679
Weak_negative
-0.0351
Weak_positive
0.0436
Weak_positive
0.0757
Weak_negative
-0.0524
Answer 8-
Weak_positive
0.0623
Weak_positive
0.0837
Weak_negative
-0.0294
Weak_positive
0.0107
Weak_positive
0.0349
Weak_positive
0.0195
Weak_negative
-0.1367
Answer 9-
Weak_positive
0.0730
Weak_positive
0.1599
Weak_negative
-0.0008
Weak_positive
0.0621
Weak_negative
-0.0090
Weak_negative
-0.0465
Weak_negative
-0.1765
Answer 10-
Weak_positive
0.0751
Weak_positive
0.0618
Weak_negative
-0.0161
Weak_positive
0.0235
Weak_positive
0.0381
Weak_negative
-0.0032
Weak_negative
-0.1348
Answer 11-
Weak_positive
0.0649
Weak_positive
0.0559
Weak_negative
-0.0081
Weak_positive
0.0093
Weak_positive
0.0232
Weak_positive
0.0223
Weak_negative
-0.1260
Answer 12-
Weak_positive
0.0410
Weak_positive
0.1047
Weak_negative
-0.0391
Weak_positive
0.0359
Weak_positive
0.0266
Weak_positive
0.0273
Weak_negative
-0.1524
Answer 13-
Weak_positive
0.0746
Weak_positive
0.1008
Weak_negative
-0.0385
Weak_positive
0.0271
Weak_positive
0.0320
Weak_positive
0.0157
Weak_negative
-0.1603
Answer 14-
Weak_positive
0.0824
Weak_positive
0.0910
Weak_negative
-0.0080
Weak_negative
-0.0149
Weak_positive
0.0034
Weak_positive
0.0129
Weak_negative
-0.1140
Answer 15-
Weak_positive
0.0550
Weak_positive
0.1294
Weak_negative
-0.0306
Weak_positive
0.0117
Weak_negative
-0.0217
Weak_positive
0.0261
Weak_negative
-0.1177
Answer 16-
Weak_positive
0.0684
Weak_positive
0.0315
Weak_negative
-0.0342
Weak_negative
-0.0441
Weak_positive
0.0621
Weak_positive
0.0192
Weak_negative
-0.0709


export_to_excel
win_buy_vuca_message
好的

2023.11.22
FearpersonqualitiesprojectorganizationalstructureRACIresponsibilitymatrixCritical ChainProject Managementfocus factorJiraempathyleadersbossGermanyChinaPolicyUkraineRussiawarvolatilityuncertaintycomplexityambiguityVUCArelocatejobproblemcountryreasongive upobjectivekeyresultmathematicalpsychologyMBTIHR metricsstandardDEIcorrelationriskscoringmodelGame TheoryPrisoner's Dilemma
Valerii Kosenko
產品負責人 SaaS SDTEST®

Valerii 於 1993 年獲得社會教育心理學家資格,此後將他的知識應用於專案管理。
Valerii 於 2013 年獲得碩士學位以及專案和專案經理資格。
Valerii 是探討 V.U.C.A. 不確定性的作者。使用螺旋動力學和心理學數理統計的概念,以及 38 個國際民意調查。
這個帖子有 0 評論
回复
取消答复
發表評論
×
Title_Grammatical_Errors
frm_label_correct_option
frm_label_your_email
send
取消
Bot
sdtest
1
你好呀!讓我問你,您已經熟悉螺旋動態嗎?