HEADER_DESCRIPTION
贊助商
Afrikaans
Azərbaycan
Bosanski
Català
Cebuano
Chichewa
Corsu
Cymraeg
Dansk
Deutsch
Eesti
English
Español
Esperanto
Euskara
Filipino
Français
Frysk
Gaeilge
Galego
Gàidhlig na h-Alba
Hausa
Hawaiʻi
Hmoob
Hrvatski
Igbo
Indonesia
Italiano
Jawa
Kinyarwanda
Kreyòl Ayisyen
Kurdî
Latinus
Latviski
Lietuvių
Lëtzebuergesch
Magyar
Malagasy
Malti
Maori
Melayu
Nederlands
Norske
O'zbek
Polskie
Português
Română
Samoa
Sesotho
Shona
Shqip
Slovenski
Slovenský
Soomaali
Sunda
Suomen
Svenska
Tiếng Việt
Türkmenler
Türkçe
Yoruba
Zulu
isiXhosa
kiswahili
Íslenska
Čeština
Ελληνικά
Беларуская
Български
Кыргызча
Македонски
Монгол
Русский
Српски
Татар
Тоҷикӣ
Українська
Қазақ
հայերեն
יידיש
עִברִית
ئۇيغۇرچە
اردو
سنڌي
عربي
فارسی
پښتو
नेपाली
मराठी
हिन्दी
বাংলা
ਪੰਜਾਬੀ
ગુજરાતી
ଓଡିଆ
தமிழ்
తెలుగు
ಕನ್ನಡ
മലയാളം
සිංහල
ไทย
ພາສາລາວ
မြန်မာ
ქართული
አማርኛ
ខ្មែរ
中文(简体)
日本
한국인

The Tale of the Tall Oak

Once upon a time, there was a tiny oak tree sapling named Peety. Peety dreamed of growing up into a mighty oak tree. 


Each year, Peety grew a little bit taller. He stretched his branches toward the sun and felt his trunk thicken as he grew. 


Over many years, Peety grew from a sapling into a young tree and finally into a tall, mature oak! He was so tall that he could see over the whole forest.


Peety noticed that the other tall oak trees had thick trunks, too. His friend Paul reached high into the sky just like Peety. Paul's trunk was thick and sturdy at the base. 


The small saplings that were sprouting had skinny little trunks. But Peety knew that would change over time as they grew taller.


Peety realized that, just like him, the taller an oak tree was, the thicker its trunk became. 


So even though the forest was filled with all different sizes of oak trees, Peety noticed a pattern - a correlation between tree height and trunk width. The tall trees always had thicker trunks, while the small saplings had skinny trunks. This was how pine trees grew strong enough to reach great heights! 


If you record how a tree grows - its height and trunk thickness - and plot it on a picture or graph, then the correlation is when these two things change together. That is, if you see that one is increasing, the other is also increasing, and vice versa.


The SDTEST® gives clues to someone's motivational values. However, additional polls can provide more pieces of the puzzle.


Imagine also giving a "Fears" poll. It asks people to rate different fears from 0 (not scary) to 5 (very scary). 


Now imagine 100 people who took both tests. You could match up each person's SDTEST® colors with their rated fears.


If people high in Blue values feared uncertainty more, that insight ties values to perceptions. Blue people may resist change more.


Or if Orange achievers feared failure most, that reveals their drive. They may overwork to avoid mistakes.


Comparing tests gives an expanded picture of values in action. More puzzle pieces make the whole image more apparent!


Multiple tests can work together, like colors blending on a palette. Other polls reveal what engages your values, like how your hobbies show what activities you enjoy most. Combined, they paint a richer picture of what motivates our thoughts and deeds.


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full results of our VUCA poll “Fears“ are available for free in the FAQ section after login or registration.


恐懼

Charts相关性
?
此函數自動計算線性和非線性相關性。在執行相關性分析之前,請先建立散佈圖來驗證關係的性質。只有在透過視覺或分析確認了假定的關係類型後,相關係數才有意義。
VUCA
?
這是表格中相關性的新接口視圖,通過螺旋動力學水平,波動性,不確定性,複雜性和歧義(V.U.C.A.)通過投票的響應與螺旋動力學顏色之間的正相關和負相關依賴性顯示
Country
Lang
-
Mail
重新計算
相關類型
線性(皮爾遜)
線性(皮爾遜)
非線性(斯皮爾曼)
Critical_value_of_the_correlation_coefficient
正態分佈,威廉·西莉·格塞特(William Sealy Gosset)(學生)
正態分佈,威廉·西莉·格塞特(William Sealy Gosset)(學生)
非正態分佈,Spearman
分配非正常非正常非正常普通的普通的普通的普通的普通的
所有問題
所有問題
我最大的恐懼是
我最大的恐懼是
Answer 1-
Weak_positive
0.0477
Weak_positive
0.0239
Weak_negative
-0.0212
Weak_positive
0.0982
Weak_positive
0.0382
Weak_negative
-0.0153
Weak_negative
-0.1516
Answer 2-
Weak_positive
0.0242
Weak_negative
-0.0012
Weak_negative
-0.0400
Weak_positive
0.0591
Weak_positive
0.0495
Weak_positive
0.0116
Weak_negative
-0.0972
Answer 3-
Weak_negative
-1.34E-7
Weak_positive
0.0010
Weak_negative
-0.0442
Weak_negative
-0.0427
Weak_positive
0.0431
Weak_positive
0.0729
Weak_negative
-0.0236
Answer 4-
Weak_positive
0.0463
Weak_positive
0.0330
Weak_negative
-0.0229
Weak_positive
0.0172
Weak_positive
0.0369
Weak_positive
0.0187
Weak_negative
-0.1027
Answer 5-
Weak_positive
0.0237
Weak_positive
0.1294
Weak_positive
0.0082
Weak_positive
0.0822
Weak_positive
2.96E-5
Weak_negative
-0.0172
Weak_negative
-0.1809
Answer 6-
Weak_positive
0.0079
Weak_positive
0.0156
Weak_negative
-0.0617
Weak_negative
-0.0131
Weak_positive
0.0174
Weak_positive
0.0832
Weak_negative
-0.0370
Answer 7-
Weak_positive
0.0099
Weak_positive
0.0404
Weak_negative
-0.0639
Weak_negative
-0.0345
Weak_positive
0.0483
Weak_positive
0.0688
Weak_negative
-0.0511
Answer 8-
Weak_positive
0.0643
Weak_positive
0.0843
Weak_negative
-0.0266
Weak_positive
0.0098
Weak_positive
0.0382
Weak_positive
0.0130
Weak_negative
-0.1371
Answer 9-
Weak_positive
0.0795
Weak_positive
0.1603
Weak_positive
0.0017
Weak_positive
0.0605
Weak_negative
-0.0067
Weak_negative
-0.0516
Weak_negative
-0.1791
Answer 10-
Weak_positive
0.0793
Weak_positive
0.0618
Weak_negative
-0.0138
Weak_positive
0.0228
Weak_positive
0.0377
Weak_negative
-0.0091
Weak_negative
-0.1333
Answer 11-
Weak_positive
0.0680
Weak_positive
0.0562
Weak_negative
-0.0083
Weak_positive
0.0087
Weak_positive
0.0256
Weak_positive
0.0174
Weak_negative
-0.1252
Answer 12-
Weak_positive
0.0418
Weak_positive
0.0986
Weak_negative
-0.0340
Weak_positive
0.0317
Weak_positive
0.0311
Weak_positive
0.0225
Weak_negative
-0.1486
Answer 13-
Weak_positive
0.0749
Weak_positive
0.0972
Weak_negative
-0.0366
Weak_positive
0.0253
Weak_positive
0.0370
Weak_positive
0.0103
Weak_negative
-0.1575
Answer 14-
Weak_positive
0.0891
Weak_positive
0.0934
Weak_negative
-0.0060
Weak_negative
-0.0146
Weak_positive
0.0043
Weak_positive
0.0070
Weak_negative
-0.1173
Answer 15-
Weak_positive
0.0582
Weak_positive
0.1257
Weak_negative
-0.0305
Weak_positive
0.0112
Weak_negative
-0.0187
Weak_positive
0.0241
Weak_negative
-0.1172
Answer 16-
Weak_positive
0.0722
Weak_positive
0.0285
Weak_negative
-0.0348
Weak_negative
-0.0447
Weak_positive
0.0687
Weak_positive
0.0125
Weak_negative
-0.0702


export_to_excel
win_buy_vuca_message
好的

2023.11.22
FearpersonqualitiesprojectorganizationalstructureRACIresponsibilitymatrixCritical ChainProject Managementfocus factorJiraempathyleadersbossGermanyChinaPolicyUkraineRussiawarvolatilityuncertaintycomplexityambiguityVUCArelocatejobproblemcountryreasongive upobjectivekeyresultmathematicalpsychologyMBTIHR metricsstandardDEIcorrelationriskscoringmodelGame TheoryPrisoner's Dilemma
Valerii Kosenko
產品負責人 SaaS SDTEST®

Valerii 於 1993 年獲得社會教育心理學家資格,此後將他的知識應用於專案管理。
Valerii 於 2013 年獲得碩士學位以及專案和專案經理資格。
Valerii 是探討 V.U.C.A. 不確定性的作者。使用螺旋動力學和心理學數理統計的概念,以及 38 個國際民意調查。
這個帖子有 0 評論
回复
取消答复
發表評論
×
Title_Grammatical_Errors
frm_label_correct_option
frm_label_your_email
send
取消
Bot
sdtest
1
你好呀!讓我問你,您已經熟悉螺旋動態嗎?