test založený book «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponzori

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Akcie spoločností vo vzťahu k personálu za posledný mesiac (áno / nie)

2) Akcie spoločností vo vzťahu k personálu v poslednom mesiaci (fakt v%)

3) Obávať

4) Najväčšie problémy, ktorým čelí moja krajina

5) Aké vlastnosti a schopnosti používajú dobrí vodcovia pri budovaní úspešných tímov?

6) Google. Faktory, ktoré ovplyvňujú efektívnosť tímu

7) Hlavné priority uchádzačov o zamestnanie

8) Čo robí šéfa skvelým vodcom?

9) Čo robí ľudí úspešnými v práci?

10) Ste pripravení na diaľku dostávať menej mzdy za prácu?

11) Existuje ageizmus?

12) Ageizmus v kariére

13) Ageizmus v živote

14) Príčiny ageizmu

15) Dôvody, prečo sa ľudia vzdávajú (Anna Vital)

16) Dôverovať (#WVS)

17) Prieskum o šťastí v Oxforde

18) Psychologický blahobyt

19) Kde by bola vaša ďalšia najzaujímavejšia príležitosť?

20) Čo urobíte tento týždeň, aby ste sa starali o svoje duševné zdravie?

21) Žijem premýšľam o svojej minulosti, prítomnosti alebo budúcnosti

22) Meritokracia

23) Umelá inteligencia a koniec civilizácie

24) Prečo ľudia odkladajú?

25) Rodové rozdiely v budovaní sebavedomia (IFD Allensbach)

26) Xing.com Hodnotenie kultúry

27) „Päť dysfunkcií tímu Patricka Lencioniho“

28) Empatia je ...

29) Čo je nevyhnutné pre IT špecialistov pri výbere ponuky práce?

30) Prečo ľudia odolávajú zmenám (od Siobhán McHale)

31) Ako regulujete svoje emócie? (Autor: Nawal Mustafa M.A.)

32) 21 zručností, ktoré vám platia navždy (od Jeremiáša Teo / 赵汉昇)

33) Skutočná sloboda je ...

34) 12 spôsobov, ako vybudovať dôveru s ostatnými (Justin Wright)

35) Charakteristiky talentovaného zamestnanca (Inštitút riadenia talentov)

36) 10 kľúčov k motivácii vášho tímu

37) Algebra svedomia (Vladimír Lefebvre)

38) Tri odlišné možnosti budúcnosti (Dr. Clare W. Graves)

39) Akcie na vybudovanie neotrasiteľnej sebadôvery (Suren Samarchyan)

40)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Obávať

Krajina
Jazyk
-
Mail
Rozvíjať sa
Kritická hodnota korelačného koeficientu
Normálne rozdelenie, od Williama Sealyho Gosset (študent) r = 0.0318
Normálne rozdelenie, od Williama Sealyho Gosset (študent) r = 0.0318
Normálne rozdelenie, Spearman r = 0.0013
DistribúciaNekonečnýNekonečnýNekonečnýNormálnyNormálnyNormálnyNormálnyNormálny
Všetky otázky
Všetky otázky
Môj najväčší strach je
Môj najväčší strach je
Answer 1-
Slabo pozitívne
0.0524
Slabo pozitívne
0.0258
Slabý negatívny
-0.0180
Slabo pozitívne
0.0949
Slabo pozitívne
0.0355
Slabý negatívny
-0.0146
Slabý negatívny
-0.1537
Answer 2-
Slabo pozitívne
0.0175
Slabý negatívny
-0.0058
Slabý negatívny
-0.0387
Slabo pozitívne
0.0669
Slabo pozitívne
0.0494
Slabo pozitívne
0.0116
Slabý negatívny
-0.0969
Answer 3-
Slabý negatívny
-0.0035
Slabý negatívny
-0.0091
Slabý negatívny
-0.0441
Slabý negatívny
-0.0435
Slabo pozitívne
0.0477
Slabo pozitívne
0.0747
Slabý negatívny
-0.0199
Answer 4-
Slabo pozitívne
0.0412
Slabo pozitívne
0.0255
Slabý negatívny
-0.0229
Slabo pozitívne
0.0192
Slabo pozitívne
0.0353
Slabo pozitívne
0.0246
Slabý negatívny
-0.0990
Answer 5-
Slabo pozitívne
0.0227
Slabo pozitívne
0.1271
Slabo pozitívne
0.0109
Slabo pozitívne
0.0770
Slabý negatívny
-0.0005
Slabý negatívny
-0.0175
Slabý negatívny
-0.1774
Answer 6-
Slabý negatívny
-0.0055
Slabo pozitívne
0.0042
Slabý negatívny
-0.0622
Slabý negatívny
-0.0080
Slabo pozitívne
0.0249
Slabo pozitívne
0.0863
Slabý negatívny
-0.0354
Answer 7-
Slabo pozitívne
0.0084
Slabo pozitívne
0.0331
Slabý negatívny
-0.0656
Slabý negatívny
-0.0297
Slabo pozitívne
0.0523
Slabo pozitívne
0.0696
Slabý negatívny
-0.0522
Answer 8-
Slabo pozitívne
0.0629
Slabo pozitívne
0.0710
Slabý negatívny
-0.0267
Slabo pozitívne
0.0130
Slabo pozitívne
0.0379
Slabo pozitívne
0.0184
Slabý negatívny
-0.1339
Answer 9-
Slabo pozitívne
0.0711
Slabo pozitívne
0.1602
Slabo pozitívne
0.0072
Slabo pozitívne
0.0643
Slabý negatívny
-0.0106
Slabý negatívny
-0.0484
Slabý negatívny
-0.1819
Answer 10-
Slabo pozitívne
0.0740
Slabo pozitívne
0.0656
Slabý negatívny
-0.0150
Slabo pozitívne
0.0292
Slabo pozitívne
0.0321
Slabý negatívny
-0.0123
Slabý negatívny
-0.1359
Answer 11-
Slabo pozitívne
0.0629
Slabo pozitívne
0.0524
Slabý negatívny
-0.0098
Slabo pozitívne
0.0104
Slabo pozitívne
0.0253
Slabo pozitívne
0.0247
Slabý negatívny
-0.1270
Answer 12-
Slabo pozitívne
0.0433
Slabo pozitívne
0.0921
Slabý negatívny
-0.0338
Slabo pozitívne
0.0335
Slabo pozitívne
0.0331
Slabo pozitívne
0.0257
Slabý negatívny
-0.1540
Answer 13-
Slabo pozitívne
0.0687
Slabo pozitívne
0.0957
Slabý negatívny
-0.0396
Slabo pozitívne
0.0304
Slabo pozitívne
0.0408
Slabo pozitívne
0.0151
Slabý negatívny
-0.1630
Answer 14-
Slabo pozitívne
0.0781
Slabo pozitívne
0.0884
Slabý negatívny
-0.0003
Slabý negatívny
-0.0096
Slabo pozitívne
0.0050
Slabo pozitívne
0.0138
Slabý negatívny
-0.1228
Answer 15-
Slabo pozitívne
0.0539
Slabo pozitívne
0.1269
Slabý negatívny
-0.0339
Slabo pozitívne
0.0148
Slabý negatívny
-0.0172
Slabo pozitívne
0.0237
Slabý negatívny
-0.1160
Answer 16-
Slabo pozitívne
0.0690
Slabo pozitívne
0.0248
Slabý negatívny
-0.0372
Slabý negatívny
-0.0385
Slabo pozitívne
0.0703
Slabo pozitívne
0.0205
Slabý negatívny
-0.0792


Export do MS Excel
Táto funkcia bude k dispozícii vo vašich vlastných anketách VUCA
V poriadku

You can not only just create your poll in the tarifa «V.U.C.A hlasovanie designer» (with a unique link and your logo) but also you can earn money by selling its results in the tarifa «Prieskum», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tarifa «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Vlastník produktu SaaS SDTEST®

Valerii získal kvalifikáciu sociálneho pedagóga-psychológa v roku 1993 a odvtedy svoje znalosti uplatňuje v projektovom manažmente.
Valerii získal magisterský titul a kvalifikáciu projektového a programového manažéra v roku 2013. Počas magisterského štúdia sa zoznámil s Plánom projektu (GPM Deutsche Gesellschaft für Projektmanagement e. V.) a Špirálovou dynamikou.
Valerii je autorom skúmania neistoty V.U.C.A. koncept využívajúci špirálovú dynamiku a matematickú štatistiku v psychológii a 38 medzinárodných prieskumov verejnej mienky.
Tento príspevok má 0 Pripomienky
Odpovedať
Zrušiť odpoveď
Zanechajte svoj komentár
×
nájdete chybu
Navrhnúť vaše správnu verziu
Zadajte svoj e-mail, ako je požadované
send
Zrušiť
Bot
sdtest
1
Ahoj! Dovoľte mi, aby som sa vás opýtal, už ste oboznámení s dynamikou špirály?